0CT-19-1995

4. JITLE AND SUBTITLE

14:41 H DLA/AQRPO

703 767 1440 P.92

! REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

gathering sna meintaining muu g, ang "q ang 1

Pubiic reporting turden 16r this eoilecusn of IN1aMMAtICN it esUMAES to aversqr l hour per rasoonse, INCIUSH
tha

'39 the Ume 10F reviewing instructions, .+ SESFCNING SRI3LING dnte sourems,

nfor

coliecrion of informauan, inciuding suggestions lor nauuna 118 Buraen. o Wash H

*gerding this burden estimate or BNy ALNEr 9508t Of thig ¢

Davis Highway, Suite 1204, Arﬂnqun VA 32302430). and 10 the Officn 6f Management Ana Auaget, Paperwork Mumon Project (3704-0186), Weshingron,

TR(8 Snrvices, Directorate for informavion Operations ana z?om 1215 leflerson ¢
i

2. REPQRT. DATE
16 Feb '96

1. AGENCY USE ONLY (Leave piank)

m
3. REPORT TYPE AND DATES COVERED }
Final Report is Feb.'94 to 15 Aug.'95

_j{Dynémic Resource Allocation System

5. FUNDING NUMBERS

T)LA 900-91-C-1482

1 *

-[6, AUTHOR(S) - _ :

-.Dr.:Denis Gracanin Mr. Al Steward X
- Dr. Stanford Smith Dr. Kimon Valavanis |
".Dr. Padmini Srinivasan Dr. Theodore Williams !

(7. PEAFORMING ORGANIZATION NAME(S) ANG ADORESSED)
A-CIM Center .

'University_pf Southwestern Louisiana
P.0. Box 44932

Lafayette, LA 70504-4932

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Logistics Agency

'AQPOT Room 3135

Technical Enterprise Team
8725 John J. Kingman Road
Fort Belvoir, VA 22060-6221

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

T Y —————— .
11. SUPPLEMENTARY NOTES . "
= DIFTRIBUTION BTATL:

Approved tor pubm.. teieas

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

‘model apparel manufacturlng cells and simulate
The system is intended to recieve notification
resources or production requirements occurs.

of appropriate schedule changes to overcome or

A dynamic resource allocation system has been developed at the USL A-CIM Center.
.This technology uses colored Petri Nets coupled with Object Oriented Databases to

It then facilitates the determination

their operation.
when a change in manufacturing

lessen the impact of the changes.

0060726 061

AR
14. SUBJECT TERMS

17. SEQURITY CLASSIFICATION

Dynamic Resource Allocation, Dynamic Scheduler, Color Petri Net

15. NUMBER OF PAGES

16. PRICE CODE

18, SECURITY CLASSIFICATION | 19.

OF-REPORT OF THIS PAGE

SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT
OF ABSTRACT

NSN 7540-01-280-5500

Sundard Form 298 {Rev. 2-89)
ey et O AN StI 219,18
MQ-W:

DISCLAIMER NOTICE

' THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK
AND WHITE MICROFICHE.

Dynamic Resource Allocation System
DLA900-91-C-1482 Phase III

Denis Gracanin, Stanford A. Smith, Padmini Srinivasan, Al Steward,
Kimon P. Valavanis and Theodore Williams, II

February 16, 1996

Contents

1.1

1.2

2.1
2.2
2.3
24
2.5

2.6

3.1
3.2

3.3

3.4

4.1
4.2
4.3
4.4
4.5

Introduction

Project Rationale e
1.1.1 The Project Environment
1.1.2 The Challenges e
The DRAS Scheduler,
1.2.1 DRAS Scheduler Basic Functions

Basic Concepts

Introduction e e
Petri Nets o e
PN Definitions e e
Modified PNs e e
PN Analysis e
2.5.1 Reachability Tree
2.5.2 Linear Algebra o
2.5.3 Reduction Methods Lo o L
Database e e e
2.6.1 Database Management System (DBMS)

Design and Implementation

Introduction L e
The DRAS Model e
3.21 PetriNets e e e e
Implementation L. o
3.3.1 System Interface
3.3.2 Workflow Analyzer 00
3.3.3 System Knowledge,
Example e

User Guide

Introduction e e e
File Menu o e e e e e e e
Database Meniu e e e e e
Edit Menu e e e e e
Analyze Menu L e e

4.6 Monitor Menu e e e e e e e e e 39

4.7 View Menu o e e e e e e e 40

48 HelpMenu. 41

Conclusion 43
2

Abstract

A major problem faced by the typical apparel manufacturer in day-to-day operations
is the need for an effective scheduler to determine actions required due to operator and/or
machine non-performance. Current scheduling systems are static by design and provide
a gross production schedule based on order demands and resources available. Thus, the
current systems provide a plan for the season, month, week, and/or day, but assume that
the manufacturing resources are available on either a constant or average basis. Should
the resources become unavailable due to absenteeism, machine breakdown, etc., the static
schedulers must be rerun to determine a new plan. In most cases, the current (dynamic)
information is not available, as updates to the (system) database(s) are only done daily or
even less frequently. Where dynamic databases do exist, the current scheduling systems
typically provide an alternative tool which allows management to try different solutions and
simulate the effectiveness of the choice. This method is limited by the ability of management
to identify optimal choices, simulate effective results, and communicate the problem and
chosen solution to the company’s human and physical resources.

The USL A-CIM Center has solved this problem by developing an automated production
planning, scheduling and reactive control system, with dynamic error detection and ac-
commodation capabilities, called the Dynamic Resource Allocation System (DRAS); DRAS
monitors resource availability in a dynamic manner and automatically identifies and imple-
ments an effective solution within the affected cell, as well as among all cells involved in the
manufacturing process. Thus, given the job floor environment (machine resources, produc-
tion capacities, production process description, etc.), a dynamically reconfiguarle planning
and scheduling scenario is derived to accommodate machine breakdowns, production rate
changes, machine reconfigurability, and in general, real-time policy changes.

The DRAS scheduler utilizes distributed databases and different classes of Petri Nets
(PNs) to accomplish this because of their proven successes in modeling system concurrency,
parallelism, asynchronous system operations, precedence relations, system component inter-
actions, structural and behavioral system properties, resource sharing, conflicts and potential
errors. The need to induce change is easily identified based upon the length of time the re-
source is not available, and the optimal change is easily identified based upon the concept
of balanced work flow that most nearly matches the overall production plan determined by
the static scheduler.

The DRAS system interfaces with the static scheduler being used in a generic manner
and facilitates other scheduler support as well. It detects production anomalies dynamically,
monitors resource availability and detects machine failure or operator unavailability by both
automatic notification and operator induced notification.

The DRAS has addressed the need for flexibility in apparel manufacturing processes:

e by providing the means for flexible support of automated machines through a CIM
network

e by providing the necessary communication to inform the machines that a particular
bundle has arrived for processing as well as giving the details of the required processing,

e by facilitating a more flexible approach to manufacturing since the machine settings
can be adjusted as frequently as necessary, and,

e by allowing the use of small bundles and supporting changes in style.

The combination of the CIM system network and the DRAS results in a powerful CIM
implementation that assists in quick response to civilian market demands and aids in rapid
changeover to military production by accommodating wide variation in product mix, im-
proving operator performance, reducing management involvement in day-to-day production
details and providing an enhanced information system to project Mean Time Between Failure
(MTBF) and Mean Time to Recover (MTTR) statistics.

Chapter 1

Introduction

1.1 Project Rationale

Automation is the major force behind the rationalization of the production process to in-
crease output per man-hour or output for a given set of production factors. Automation is
feasible because of two innovations: the digital computer and the integrated circuit.

Two key concepts for successful automation are flexibility and integration. Flexibility
allows easy and rapid reconfiguration of the production system to manufacture several differ-
ent products and/or product variants, achieving a high degree of machine utilization and low
degree of in-process inventory and short response time to changes in consumer preferences.
Integration provides a balanced material and information flow system which results in the
production of the right amount of goods at the right time for demand.

The central theme of this project is Flexible Computer Integrated Manufacturing (FCIM).
The main objective is to develop a fully automated production planning, scheduling and reac-
tive control system, with dynamic error detection and accommodation capabilities, suitable
for an apparel factory /industrial plant. Given the job floor environment (machine resources,
production capacities, production process description, etc.) a dynamically re-configurable
planning and scheduling scenario is developed to accommodate machine breakdowns, pro-
duction rate changes, reconfigurability of machines, and in general, real-time policy changes.

The major advantage of this project is threefold:

e It can be used in an apparel industrial plant.

e It may be also used for military garment manufacturing. The only changes are the
inputs to the system and the initial machines/system configuration.

e It may also be adapted to non-apparel manufacturing applications.

1.1.1 The Project Environment

Modern manufacturing environments are extremely dynamic and unpredictable. The Just-
In-Time and Zero-Inventory approaches to manufacturing give producers higher profits and
greater leverage in the marketplace while extracting a heavy toll on the plants which actually
produce the goods. Although Computer Integrated Manufacturing (CIM) has done much to

1

improve plant efficiency, plant management still bears much of the burden of running a
flexible and efficient manufacturing process. This is because a flexible manufacturing system
(FMS) demands from managers the ability to examine and select from an assortment of
production plans which are both feasible and economical. They must also be always ready to
deviate from those carefully considered plans at a moments notice in the event of equipment
failure, employee absence/illness, unexpected changes in production goals, etc.. What is
required of modern CIM system management, and in particular of apparel CIM system
management, is the ability to formulate production plans quickly and thoroughly, working
as much as 1 day in advance OR with as little as 15 minutes notice. Without assistance,
this degree of preparedness and responsiveness demands large amounts of time from plant
managers, and requires that they have rapid access to appropriate information.

1.1.2 The Challenges

Intelligent scheduling and reactive planning demands far more information and advice than
ordinary databases and expert systems can provide. While an accurate picture of the status
of each machine, operator, bundle (job), and even every scrap of material is helpful, few
databases are capable of storing and making available the “knowledge” of how the production
system can and should work—knowledge which is vital to maintain proper plant operation.
And while expert systems provide advice and answers to management’s questions, they are
often far too complex to maintain accurate and useful information about the real-time status
of a modern production system.

What is needed is an integration of the control and information systems for a manufac-
turing system, a knowledge management system which both stores and applies knowledge
and information about the production system in a seamless manner that provides maximum
flexibly and freedom for imaginative and innovative use of the system. The underpinning of
this seamless interface is the model (or scheme) used to represent the information/knowledge
about the production system. Research in knowledge representation is a field of computer
science which enjoys growing support and offers tremendous potential for intelligent manu-
facturing systems.

Thus, pivotal tasks of this project have been the development and application of a suitable
scheme for representing the status and behavior of the manufacturing cell(s) and the control
and information systems to take advantage of this scheme.

1.2 The DRAS Scheduler

The DRAS scheduler is composed of two modules: The first, “Basic Function,” stage devel-
ops a static Petri net model of the manufacturing cell(s) used to program a “bench version”
of the DRAS Scheduler software. The scheduler selected is interfaced to initialize the DRAS
Scheduler. The DRAS Scheduler provides scheduling, reactive planning, database manage-
ment, and resource management functions, used to evaluate the knowledge representation
scheme and refine the techniques used to model production systems.

The second, “Interface,” stage accepts the bench version of the DRAS Scheduler and
adds a sophisticated graphical user interface (GUI) to make its full functionality available to

the system operator. Communications and control of CIM cells (workstations) are provided.

The modeling, analysis, control, and simulation tool is Colored Petri Nets (CPN). CPNs
have already been proven as an effective tool for modeling and control of automated manu-
facturing systems for the following reasons:

e They model concurrency, parallelism, and asynchronous system operations.

e They model precedence relations, system component interactions, structural and be-
havioral system properties.

e They model systems which require resource sharing.
e They model system conflicts and potential errors.

e They are a mathematical and graphical tool.

In summary, CPNs and their numerous extensions provide both a qualitative and quan-
titative tool for system performance evaluation, resource utilization, effect of failures on
system production rate, etc.

CPNs provide automatic, standardized representation and utilization of several aspects
of information required for planning and scheduling, including partial ordering of concurrent
operations, temporal constraints and dependencies, resource and data requirements, and in-
formation requirements, e.g., priorities, control heuristics for constraint conflict resolution,
and goals (preferences). The CPN formalism makes it possible to maintain a factory sched-
ule integrated with an event-based control mechanism to provide a framework for reactive
control. Time is implicitly represented in the precedence relationships between operations,
the durations associated with setup and operations, and can also be represented absolutely
as start and end times or availability times.

Colored Petri nets are amenable to specific standard analyses to determine potential
problems such as starvation/deadlock situations (corresponding to the nonavailability of
schedule operation), buildup of tokens (parts, material) in some segment of the system, etc.
It is possible to analyze the effect of various scheduling policies and preferences:

e System Definition with respect to CPN properties,

e Avoidance of Production Halt (Liveness),

Capacity Constraint,

Maintenance Work-in-Process Buildup (Boundedness), and,

Error Recoverability (Reversibility).

1.2.1 DRAS Scheduler Basic Functions

The outcome of this first phase of the DRAS Scheduler project is a proven bench version
of the scheduler with integrated PN controller and Object Database (see Fig. 2). The
Control System performs planning, scheduling, error analysis, and reactive planning, while
the Information System maintains and makes available knowledge about the system and the
status of its components.

Scheduler Functionality

Task 1: Static Petri Net Model of the System Knowledge representation for
machine intelligence involves identification, representation, and utilization of knowledge in
problem solving. The generation of plans takes into account the full complexity of the envi-
ronment modeled. A complete and accurate model of the various relationships of interacting
components, processes, and production facilities is built to simulate the behavior of the

system.
To decide which activity to perform, one must know:

e the operations (transformations applied to materials),

e the precedence relations of operations, the resources of the system (materials, machines,
tools, information, fixtures, etc.),

e the duration of operations/demand for resources,
e the mix and number of jobs to be scheduled,

e the constraints on the system (ordering of operations, number of resources, capacity
constraints, constraints on usage of resources, etc.),

e the substitutability of resources, and,

e the scheduling objectives or policies (minimum idle time, minimum work-in-process,
etc.).

Task 2: Resource/Jobs/Process Scheduler A static scheduler takes as input a de-
tailed system description, expected job mix, operator characteristics, and intelligence gleaned
from shop floor experts. It provides as output a pre-schedule (operation sequence), which is
used as the initial expected behavior of the DRAS Scheduler. A general format is specified
for the interface between static schedulers and the DRAS Scheduler.

Task 3: Database Management An object database serves as the state representa-
tion enabling transitions to occur in the scheduler. Information management technology is
applied to:

e the control information or meta-data (system and control definitions),
e the resource database (managing cell units, operators, etc.), and,
e inventory (input materials, work-in-process, etc.).

Designing the database is an implementation project, while the knowledge representation
for decision support requires more theoretical study.

Task 4: Resource Management There are three major system resources:
e input material,

e operator availability, and,

e production machines.

The resource manager must constantly monitor the availability of input material and status
of machines on a real-time basis. This is essentially a specialization/optimization of the
scheduler’s more general functionality to provide specific operations as efficiently as possible.

Task 5: Error Analysis and Reactive Planning An intelligent system needs the
ability to react to changing circumstances. Errors may be introduced during simulation
to develop and evaluate recovery strategies. Errors may also occur online, during plan
execution, in response to real problems. Inputs to an error handler include definitions of
error conditions, descriptions of expectations regarding error (MTBF, MTTR), descriptions
of system actions for error handling and recovery policies. Outputs include evaluations of
various error recovery policies based on simulation. The system is used to directly coordinate
error recovery on the shop floor based on successful simulation. The scheduler can (in an
operational environment) control recovery actions directly or suggest recovery actions to the
operator on the shop floor. '

DRAS Scheduler Interface

The outcome of this second phase is a tested, production version of the scheduler with full
communications to the system operator, Leadtec system, and the CIM cells. The System
Operator Interface is supported by a low-level Graphical User Interface (GUT) built to access
and manipulate the CPN controller and object database.

Task 6: System Monitor To make the scheduler functionality accessible to man-
agement and operators, a sophisticated user interface is provided having an iconic view
of the production system. A low-level, programmable, Graphical User Interface (GUI) is
constructed and linked to the scheduler. This GUI may then be programmed to provide
whatever interfaces are desired to monitor and manipulate the scheduler.

The System Monitor is a simple, first interface that is both useful and easy to program
into the GUI. It shows the overall status of the system as a collection of labeled icons and
allows the operator to “click” on a particular icon to get more information about some aspect
of the system. It offers a visual explanation of the system and allows the operator to monitor
system conditions easily and intuitively. In addition to a static picture of the system status,
the system monitor also shows the flow of information, parts, and resources through the
system as a schedule is executed. This flow (real-time or simulated), is the dynamic picture
of the system which conveys a true picture of what the system is actually doing at any
moment.

Task 7: System Operator Interface As an extension to the System Monitor, the
System Operator Interface makes the full functionality of the scheduler available to the
operator via interfaces built upon the programmable GUIL Operations that are supported
include defining a new CIM cell (workstation), identifying a CIM cell (function, capacity,
location, etc.), define a new job (product code, size, quantity, priority, etc.), asserting control
of a cell unit (activate a cell, deactivate a cell, re-route a process, change a job priority, etc.),
generate reports (for supervisors and managers).

Task 8: Cell Controller Protocol The Cell Controller Protocol facilitates the ex-
change of control signals and messages among the CIM system, operator, and both master
and cell controller. Control signals for CIM cells can initiate automatic cell actions based
on plans, schedules, and system state, while messages to human operators may warn of
impending problems and/or request intervention.

Task 9: Interface Protocol to Leadtec System A second protocol may allow the
DRAS Scheduler to communicate with the Leadtec system at a selected plant. This includes
an interface to the Leadtec software running on a “host” computer, as well as the Leadtec
barcode reader used to track bundles through the system.

Chapter 2

Basic Concepts

2.1 Introduction

2.2 Petri Nets

Theoretical methodologies and applications of PNs have been developed for modeling,
analysis and performance evaluation of production control systems, factory automation and
discrete event dynamic systems [7, 10, 28, 39, 48, 49, 51]. Detailed studies related to the PN
history, application areas and control of automated manufacturing systems may be found in
3, 17, 43].

Directions in which ordinary PNs are modified include:

e Imposing additional constraints on the ordinary PN model, thus making the analysis
easier, and,

e Adding enhancements or new semantics to the ordinary PN model, thus increasing the
expressive power.

Enhancements and modifications of ordinary PNs have been introduced to increase their
modeling capabilities. They include the theory of modified PNs [7], Prot nets [10], timed
decision free PNs [19], many-sorted High-level nets [8], rainbow nets [34], stochastic nets [2,
27], colored adaptive structured PNs [23], Predicate/Transition nets (PrT-nets) [44], Colored
PNs (CP-nets) [33], as well as many additional general and/or specific (place, transition)
modifications [4, 3, 13, 15, 36, 39, 40, 45, 55, 56, 61, 66, 67]. It is important to emphasize
that most of the net models were basically designed with a single or narrow application
area in mind. A breakthrough occurred when Predicate/Transition nets were introduced to
incorporate in a formal manner the concept of “individuals with changing parameters and
relations” into net theory [21, 22].

CP-nets were introduced to overcome limitations related to the calculation of linear
place-invariants (S—invariants) in PrT-nets (which contain “free variables” over sets of col-
ors) [31, 32]. CP-nets attach explicitly a set of possible token—colors to each place and a set
of possible occurrence—colors to each transition. Quoting [31], CP-nets differ from PrT-nets
in the following ways:

e The set of possible token—colors at a place is explicitly defined,

e The number of tokens added or removed at a given place may be different for two
occurrence—colors of the same transition, and,

o The set of allowable expressions and predicates is not explicitly defined but if desired
this can be done by means of a many-sorted algebra, from which the allowable expres-
sions, predicates, functions and sets can be built up.

Moreover, it has also been shown in [31], how to combine the qualities of PrT-nets and
CP-nets into a single net model, called High—level PNs. (The name created confusion since
this term was also used as a generic name for PrT-nets, CP—nets, Relation nets, etc.).

Recently, PNs and their modifications have also been used as a tool for performance
analysis and evaluation of decision making organizations associated with Command, Control,
and Communications (C3) systems [54, 60, 64], Artificial Intelligence (AI) planning and
heuristic problems [46, 47], and coordination of intelligent machines [62, 63].

Important properties that have contributed to the value of PNs as a modeling tool,
include: model clarity and ease of representation, ability to model nondeterminism, conflicts,
timing information, resource sharing, concurrency, parallelism and control of asynchronous
operations [41, 43, 57, 68]. The existence of qualitative analysis and visualization techniques,
the ability to link directly the net structure properties (liveness, consistency, boundedness,
connectivity) to desirable real-time/real-life system performance criteria, and the ability to
utilize the structure of the net model (partial ordering) to characterize system causality, are
additional properties which justify further the wide utilization of PNs as a modeling tool.
The very extensive list of references in [43] provides further justification for the applicability
of PNs to various diverse applications.

System design with PNs currently follows three principles [53]:

e Distinguish system components and designate every component to be either passive
or active. The passive components store things or make them visible. The active
components refer to produce, transport or change things,

e Systematic movement from PNs consisting of active and passive components to PNs
that model dynamic behavior, and,

e During the development of PN representation, there are two ways of developing a
model:
— Replacing a net element with a corresponding subnet, and,
— Adding a net element.
There are certain limitations related to the modeling power of existing classes of PNs.

These limitations become more obvious when one deals with complex, dynamic, hierarchi-
cally intelligent systems:

e System descriptions (based on existing classes of PN) result in huge models with a
corresponding drastic reduction in their manageability,

e It becomes extremely difficult to verify the system model structural properties,

e For hierarchical systems, pertinent composition/decomposition rules for the PN models
are either not well defined, or are not effective in simplifying the PN operation, and,

e While PNs clearly provide a useful operational model, their applicability is limited for
system specification purposes mainly due to lack of abstraction concepts.

To be more specific, current hierarchical approaches related to PN modeling utilize the
concept of “subnets”. This results in higher level nets with a smaller number of places. Anal-
ysis at the subnet level is propagated to the higher level net. However, the firing/operation
of the total net is not simplified by the identification of the node clusters which constitute

the subnets.

2.3 PN Definitions

An ordinary PN consists of a fixed number of places and transitions with tokens dis-
tributed over places. Each transition has an associated set of input places and a set of
output places. When every input place of a transition has enough tokens, the transition is
enabled and may fire. When a transition is fired, a token is consumed (deleted) from every
input place and produced (added) to every output place.

The structure of an ordinary PN as well as various definitions are taken from [49] in order
to provide a foundation for the similar definitions for the PPN.

Definition 2.1 (Petri Net) A Petri net structure, C, is a four—tuple:
C=(P,T,1,0)
where:

P : A finite set of places P = {p1,...,pu}, n >0,
T : A finite set of transitions T = {t1,...,tn}, m >0,
I : An input function, a mapping from transitions to bags (multisets) of places, I : T — P>,

O : An output function, a mapping from transitions to bags of places, O : T — P*.

The set of places and the set of transitions are disjoint:
PNT =0
For a given PN, a corresponding graphical representation, the PN graph is:
Definition 2.2 (Petri Net Graph) A Petrinet graph G is a bipartite directed multigraph:
G =(v,4)

where:

V : A finite set of vertices V = {vy,...,0s},
A : A finite bag of directed arcs A = {ay,...,a,}, a; = (vj, V), v, v, € V.
The set V is partitioned in two disjoint sets P and T such that:
V=PUT, PNT=0
and for each directed arc a; = (v;,vy), either:
v;EP AN weT

or:
vj € T Av, €P

For a place p; € P and a transition ¢; € T the folowing holds:

e 1j is the input transition of p; if there exists a directed arc a; € A from ¢; to p;,
e t; is the output transition of p; if there exists a directed arc a; € A from p; to #,
e p, is the input place of ¢ if there exists a directed arc a; € A from p; to t, and,
e p; is the output place of #; if there exists a directed arc a; € A from i‘k to pj.

Definition 2.3 (Marking) A marking p of a Petri net C = (P,T,I,0) is a function from
the set of places P to the nonnegative integers N :

p: PN

Each place may contain tokens. A token is a primitive concept like place or transition
and it is used to define the execution of a PN. A marking indicates the number of tokens in
each place.

Definition 2.4 (Marked Petri Net) A marked Petri net:
| MZ(C,/,L):(P,T,I,O,,U)
is a Petri net structure C' and a marking p.

A PN executes by firing transitions. A transition fires by removing tokens from its input
places and creating new tokens which are distributed to its output places (one token for each
arc).

Definition 2.5 (Enabled Transition) A transition t; € T in a marked Petri net C' =
(P,T,1,0) with marking p is enabled if for all p; € P:

pu(pi) > #(pi, I(t5))
Firing an enabled transition t; results in a new marking i’ defined by:
dps)=pm) — #:i, 1) + #i0()

where #(pi, I(t;)) denotes the multiplicity of a place p; in the bag of input places of a transi-
tion t;, and #(p;, O(t;)) denotes the multiplicity of a place p; in the bag of output places of
a transition ;.

10

Firing of transitions changes the marking of a PN.

Definition 2.6 (Immediately Reachable Marking) For a Petri net C = (P,T,1,0)
with marking p, a marking 1’ is immediately reachable from p if there exists a transition t;
€ T such that:

!

6(“7 tj) =y
where § is a next-state function which gives the marking resulting from firing a transition t;
under marking .

Definition 2.7 (Reachability set) The reachability set R(C, u) for a PetrinetC = (P,T,1,0)
with marking u is the smallest set of markings defined by:

1. p € R(C,).
2. If f € R(C, p) and p" = 6(,t;) for somet; € T, then p” € R(C, p).

Definition 2.8 (Safeness) A place p; € P of a Petri net C = (P,T,1,0) with initial
marking p is safe if for all 4’ € R(C, p):

wip) <1
A Petri net s safe if each place in that net is safe.

Definition 2.9 (Boundedness) A place p; € P of a Petri net C = (P, T, I,0) with initial
marking u is k—safe if for all ' € R(C, p): .

Wipi) <k
A Petri net is k—safe if each place in that net is k—safe.
Note that safeness is a special case of boundedness where k = 1.

Definition 2.10 (Strictly Conservative Petri Net) A Petri net C = (P,T,1,0) with
initial marking p is strictly conservative if for all ' € R(C, p):

Z ©(pi) = Z p(p:)

piEP pi€EP

Definition 2.11 (Conservative Petri Net) A Petrinet C = (P, T, I,O) with initial mark-
ing p is conservative with respect to a weighting vector @, @ = (wy, ..., wy), n = |P|, w; >0,
if for all i € R(C, p):

Xn: w; - 1 (pi) = an w; - p(pi)

i=1 =1

Definition 2.12 (Liveness) A Petri net C = (P, T, I,0) with initial marking p has these
levels of liveness:

Level 0 : A transition t; is live at level 0 if it can never be fired.

11

Level 1 : A transition t; is live at level 1 if it is potentially fireable; that is, if there exists a
¢ € R(C, n) such that t; is enabled in 1.

Level 2 : A transition t; is live at level 2 if for every integer n there erists a firing sequence
in which t; occurs at least n times.

Level 8 : A transition t; is live at level 3 if there is an infinite firing sequence in which ;
occurs infinitely often.

Level J : A transition t; is live at level 4 if for each i’ € R(C, p) there ezists a firing sequence
o such that t; is enabled in 0(u',0), where 6(u,0) is an “extended” next-state function
which gives the marking resulting from firing a sequence of transitions, ¢ = t;, ---1;,, one
after another, under marking p.

A transition which is live at level 0 is dead. A transition which is live at level 4 is live.
A PN is live at level i if every transition is live at level 7.

Definition 2.13 (The Reachability Problem) Given a Petri net C with marking p and
a marking (', is ' € R(C, u)?

Definition 2.14 (The Coverability Problem) Given a Petri net C' with initial marking
p and a marking ', is there a reachable marking p” € R(C, u) such that p" > p'?

This concludes the description of the ordinary PNs and their properties.

2.4 Modified PNs

Due to some structural characteristics, the modified classes of PNs have some character-
istics which are not present in ordinary PNs generally [16], due to the additional constraints
imposed on the ordinary PN model.

Definition 2.15 (State graph) A Petri net C = (P,T,1,0) is a state graph if and only
if every transition has exactly one input and one output place.

Definition 2.16 (Event Graph) A Petrinet C = (P, T, I,0) is an event graph if and only
if every place has exactly one input and one output transition. It is also called transition
graph or marked graph.

Definition 2.17 (Conflict—free Petri Net) A Peiri net C = (P,T,1,0) is conflict-free
if and only if every place has at most one output transition.

If there is a place with more than one output transition, then a conflict exists and it is
denoted as a pair of place p, and a set of output transitions of the place p, {¢;,,t;,,...} as:

(p’ {til’ ligy - })

Definition 2.18 (Free—choice Petri Net) A Petri net C = (P, T,I,0) is a free-choice if
and only if for every conflict (p;, {ti1, ti2, . ..}) none of the transitions in the conflict possess
an input place other than p;.

12

Definition 2.19 (Extended Free—choice Petri Net) A Petri net C = (P,T,I,0) is an
extended free-choice if and only if for every conflict (p;, {ti1, ti2, .. .}) all transitions in the
conflict have the same set of input places.

Definition 2.20 (Simple Petri Net) A Petri net C = (P, T, 1,0) is a simple Petri net if
and only if each transition is affected by at most one conflict.

Definition 2.21 (Pure Petri Net) A Petri net C = (P,T,I,0) is a pure Petri net if it
has no self-loop, i.e., a place p; and a transition t; such that p; is both an input and an
output place to t;.

A place p; is a pure place if there is no transition for which p; is both an input and an

output place.
A transition t; is a pure transition if there is no place for which t; is both an input and

an output transition.

2.5 PN Analysis

There are several approaches used to analyze the properties of PNs:
e The reachability tree,

e Linear algebra, and,

e Reduction methods.

There are also numerous other results which are very specialized.

2.5.1 Reachability Tree

The reachability tree represents the reachability set of a PN. Each node corresponds to
one of the reachable markings, the root node being the initial marking. Each (directed) arc
represents the firing of a transition which is enabled by the marking represented by the origi-
nating node, and a destination node represents the marking after the firing of the transition.
Every path in the reachability tree represents a sequence of possible transition firings. For a
PN with an infinite reachability set, the reachability tree is also infinite. Therefore, in order
to make this usable, a modification, called the coverability tree, is introduced. There is a
special symbol, w, which can be thought of as “infinity” and which represents a number of
tokens which can be made arbitrarily large. The finite coverability tree can be constructed
by using w and the reachability tree.

There are several results which follow immediately from the coverability tree.

e A PN is bounded if and only if the symbol w never appears in its reachability tree, i.e.,
the PN is a finite state system. For bounded PNs, the reachability tree and coverability
tree are the same.

e If the weighted sum is the same for all nodes in the coverability tree, the PN is con-
servative. Note that the weight corresponding to w must be 0.

13

e The coverability problem can be solved by checking if there exists a node such that
corresponding marking is covered.

The reachability (coverability) tree cannot be used, in general, to solve the reachability
or liveness problems, because the symbol w represents a loss of information. Also, it can be
very large even for small PNs.

2.5.2 Linear Algebra

This approach is based on a matrix view of PNs. Input and output functions are repre-
sented by two matrices, D~ and D*. Each matrix has m rows, one for each transition, and
n columns, one for each place. It is defined as:

Dlj,d = #(pi, (1))
D*lj, i = #(pi, O(t;))
Also, the marking yx can be represented as a vector fi, where:
pi = fli] = p(pi)

The transition ¢; is represented by the unit m-vector €; and it is enabled if:

l_j 7’ D~
Consequently: B
S(uty) = i+ D
where:
D=D"—-D"
For a given weighting vector u:
D.-w=0

Consequently, a PN is conservative if and only if there exists a positive vector w such that
D - = 0. This can also be used to find @. A reachability problem reduces to solving an
equation:

=j+&-D

Unfortunately, the matrix approach has several problems:

e The matrix D itself does not properly reflect the structure of PN, e.g, transitions which
have the same input and output place are represented in the same position of the D~
and Dt matrices and have 0 in this position in the D = Dt — D~.

e The solution for the reachability problem is necessary, but not sufficient, and,

e There is a lack of sequencing information.

14

2.5.3 Reduction Methods

This approach is used to replace big PNs with smaller and simpler ones. These simplified
nets are not equivalent to the original ones but have some properties preserved. Two main
ways are [16]:

e Preservation of liveness and boundedness, and,
® e Preservation of invariants.
Some types of reduction which preserve liveness and boundedness are:
Substitution of a place : A place p; can be substituted if it satisfies the following:

e The output transitions of p; have no other input places than p;,
e Place p; is pure, and,

e At least one output transition of p; is not a sink transition.
® Implicit place : A place p; is implicit if it satisfies the following:

e The marking of this place never forms an obstacle to the firing of its output
transition, and,
e Its marking can be deduced from the marking of the other places.

Neutral transition : A transition ¢; is neutral if and only if the bag of its input places is
identical to the bag of its output places.

Identical transitions Two transition are identical if they have the same bag of input and
the bag of output places. One of them and its corresponding arcs can be suppressed.

Preservation of invariants can be done by the following reductions:
e If ¢; is a self-loop transition with respect to place p;, then the reduction consists of:

— Suppressing arcs from p; to ¢; and from ¢; to p;, and,
— Suppressing transition ¢, if it is isolated.
e Ift; is a pure transition with at least one input and one output place, then the reduction
consists of:
— Transition ¢; is suppressed.

— A place p; + py, is associated with every pair of places such that p; is the input
place of ¢; and pj, is the output place of ¢;. The number of tokens is equal to the
sum of number of tokens in p; and p.

— The input (output) transitions of p; + p; are input (output) transitions of p; and
pi, except for t;.

15

2.6 Databése

Database and database technology have had a major impact in almost all areas where com-

puters are used, including business and engineering. In general a database is a collection of

related data which are known facts that can be recorded and that have implicit meaning.

For example, consider the names, telephone numbers, and addresses of machine operators.
A database has the following implicit properties:

e A database represents some aspect of the real world, sometimes called the miniworld
or the Universe of Discourse (UoD). Changes to the miniworld are reflected in the

database.

e A database is a logically coherent collection of data with some inherent meaning. A
random assortment of data cannot correctly be reffered as database.

e A database is designed, built, and populated with data for a specific purpose. It has
an intended group of users and some preconceived application in which these users are
interested.

2.6.1 Database Management System (DBMS)
Object-Oriented Database

Databases and database technology have had a major impact in almost all areas where com-
puters are used, including business and engineering. In traditional database systems there
is an incompatibility between database structures and the programming language’s struc-
tures. An object-oriented database systems provides persistent storage for program objects
and data structures. Therefore, a complex object in a programming language can be stored
permanently in an object-oriented database, thus surviving the termination of program exe-
cution; further, it can be later directly retrieved. Object-oriented database systems typically
offer data structure compatibility with one or more object-oriented programming languages.
The Object Database Standard ODMG-93 [11] covers all the necessary functionality required
for an application to create, modify and share objects.

16

Chapter 3

Design and Implementation

A major problem faced by the typical apparel manufacturer in day-to-day operations is the
need for an effective scheduler to determine actions required due to operator and/or machine
non-performance. The Dynamic Resource Allocation System (DRAS) scheduler described
in this paper is the natural outgrowth of previously funded research related to the design,
development, technology transfer and installment of a CIM system in an apparel plant.
The already developed CIM system provides a way for the DRAS scheduler to dynamically
change a production process. The need to induce change is identified based on the length
of time the resource is not available, and the optimal change is identified based upon the
concept of balanced work flow that most nearly matches the overall daily production plan.
The DRAS scheduler detects production anomalies dynamically, monitors resource availabil-
ity and detects machine failure or operator unavailability by both automatic and operator
induced notification. The daily production plan is used as a guideline to determine how
to react and correct production problems. The underlying system model is based on Petri
nets and object-oriented databases. Petri nets provide a dynamic model of the CIM system
while object-oriented databases provide necessary information about system components and
overall system activity.

3.1 Introduction

The main objective of this research has been to develop a fully automated production plan-
ning, scheduling and reactive control system, with dynamic error detection and accommoda-
tion capabilities, suitable for an apparel factory/industrial plant. Given the job floor envi-
ronment (machine resources, production capacities, production process description, etc.) a
dynamically re-configurable planning and scheduling scenario is developed to accommodate
machine breakdowns, production rate changes, reconfigurability of machines, and in general,
real-time policy changes. Such an objective is extremely complex. However, for a limited
problem domain and well defined area as is an apparel plant, the design and implementation
becomes simpler.

Previous work related to transfer of CIM technology to an apparel manufacturing plant
[58] has been used as the basis for the development of a Dynamic Resource Allocation System
(DRAS), described in this paper. A CIM system has been implemented in the Levi Strauss &

17

Co. plant in Wichita Falls, Texas (Figure 3.1). A LeadTec Systems, Inc. automated payroll

LeadTec Master
AS/400
Controller
System
LeadTec Cell
Concentrator Controller

C)

Machine 1

2

Machine n

CD LeadTec Bar Code Scanner

USL A-CIM Machine Interface

Figure 3.1: CIM System

system generates an electronic notification of bundle arrival at machines in an automated cell.
This notification is used by the CIM system to retrieve the needed garment description and
the appropriate sundry information which is, then, used to determine whether to instruct the
machine to modify its settings or activate a different sewing program. In addition, messages
are transmitted to the machine operators.

Such a system can be interfaced with a scheduler (Figure 3.2) that utilizes both human
resources activity and machine activity and configuration to provide for:

Database Management : Interaction with the CIM system (payroll system and human
resources activity) and management of the system data which, among others, include
production history, description of the CIM system, user/machine performance, etc.

Static Petri Net Model : A Petri net Model of the CIM system is used for error analysis
and reactive planning and to produce the schedule.

Resource Management : Interaction with the CIM system (machine status, part pro-
cessing) and changing the machine setup when required.

18

Resource/Jobs/Process Scheduling : Update of the production schedule based on the
current state of the system and the user input.

System Monitor : Interface to the user and data gathering from other modules to display
the current status of the system and generate requested reports.

Error Analysis and Reactive Planning : “What If” system design and planning that is
based on error analysis using the static PN system model. A system action simulator
[20, 42] is included.

Manufacturing Orders /
and Constraints Input /

Resource/ oy Errol{ »
Jobs/Process stem nalysis
Scheduli Monitor Reactive

cheduing Planning

DRAS

Control & Information Modules

Database Static PN Resource
Management System Model Management

Real-Time Payroll Cell Controller
System Interface with Machine Interfaces

Human Resource Machine Activity
Activity and Configuration

Figure 3.2: The basic structure of the DRAS system

In addition, manufacturing orders and constraints (daily production plan) are goals that
need be achieved during the daily production cycle.

3.2 The DRAS Model

A manufacturing system is modeled based on the features that are important for the DRAS
scheduler. The following considerations are then taken into account: manufacturing plant
considerations, machine considerations, and personnel considerations.

Manufacturing plant considerations describe the overall functionality of the plant. First,
a portion of the plant that is to be included in the DRAS scheduler is defined by specifying
the number of separate cells and number and type of machines in each cell. For the selected

19

-

part of the plant, the level of automation is determined by specifying type of management
and supervision system, inventory and storage system, transportation system, number of
automated and manually operated machines, and availability of a CIM network. Then,
dependence relationships between machines in each cell and between cells, are specified, as
well as dependence upon sundries, supplies, human operators, etc. Finally, events in the
plant are specified at the system, cell, and machine level. That includes availability of work,
sundries, supplies, and task completion. In addition, system changes in machine availability,
human resources, work availability and in production goals are considered.

Machine considerations are defined separately for automated and for manual machines.
Both types of machines are specified in terms of capabilities, reconfigurability, current con-
figuration and typical faults. Typical faults include level of performance loss, mean time to
repair and acceptable frequency of occurrence. In addition, for automated machines elec-
tronic and manual reconfigurability is considered.

Personnel considerations are based on the performance efficiency for each task, both
normal and current. In addition, availability (active and inactive) and unavailability (reason
and estimated duration) are considered.

The basic structure of the model used by the DRAS scheduler is a Hierarchical Colored
Petri net simulator, integrated with an object database, which stores knowledge about the
status and operation of the system and provides scheduling and reactive planning services.
The necessary data include description of the factory floor (floor diagram), description of the
product process, available parts, and target production. Each machine is represented by the
corresponding Colored Petri net. A Petri net for the whole system is generated by adding
additional places and transitions to represent flow of parts among machines. The Petri net
models the dynamic behavior of the system by firing transitions.

3.2.1 Petri Nets

The DRAS scheduler utilizes different classes of Petri nets (PNs) because of their proven
success in modeling system concurrency, parallelism, asynchronous system operations, prece-
dence relations, system component interactions, structural and behavioral system properties,
resource sharing, conflicts and potential errors [16, 43]. In this paper, it is assumed that the
reader is somehow familiar with basic PN modeling techniques. For fundamentals of PN
theory, the reader is referred to [49, 52].

Important properties that have contributed to the value of PNs as a modeling tool, in-
clude: model clarity and ease of representation, ability to model nondeterminism, conflicts,
timing information, resource sharing, concurrency, parallelism and control of asynchronous
operations [16, 18, 69]. The PN formalism makes it possible to maintain a factory sched-
ule integrated with an event-based control mechanism to provide a framework for reactive
control. PNs are amenable to specific standard analysis to determine potential problems
such as starvation/deadlock situations, buildup of tokens (parts, work-in-process) in some
segments of the system, possibility of production halt, constraint maintenance, error recov-
erability, etc. The existence of qualitative analysis and visualization techniques, the ability
to model real life system performance criteria and evaluate them based on the correspond-
ing PN properties and the ability to characterize system causality are additional reasons
for widespread use of PNs as a modeling tool. The significance of the dynamic aspects of

20

scheduling made possible by the Petri net model representation lies in the fact that effective
computer integrated manufacturing requires the ability to efficiently schedule operations in
an event-based system, including expected and unexpected occurrences.

Figure 3.3 shows how a real system may be modeled in terms of Petri nets. The system

Svstem Model Petri net
4 model
Revise Analyze
Properties of
the system

Figure 3.3: Modeling cycle

should satisfy a set of requirements. A Petri net model of the system is first constructed
and analyzed. The properties of PNs like safeness, boundedness, conservation, liveness,
reachability and coverability are then used to evaluate the corresponding system through
the use of analysis techniques which include the reachability tree and matrix equations. The
results of the analysis are then used to revise the system, if necessary, according to the
requirements. The sequence: model, analyze and revise, may be repeated until the system
satisfies all set requirements.

As an example, a simple model of a machine shop that can process up to two orders in
parallel is considered. The corresponding PN model is shown in Figure 3.4, and is composed
of the following places and transitions:

P, : Outside world (the rest of the PN model).
P; : An order is waiting.

P, : The order is being processed.

Py : The order is complete.

P, : The machine shop is waiting for an order.
and 4 transitions:

t, : An order arrives.

to : Processing starts.

ts : Processing is complete.

t4 : The order is sent for delivery.

21

Py
PN

mTTTTSToTTmToTommoooees 1 e TTTTTTTT Ty

| S~ Il

|

! Outside world |
|

: An order Processing Processing The orderis

| arrives Py starts Pois complete 3 sent for delivery !

! |

t I

An order
is waiting

t The orderis t4

being processed

Theorder 1,
is complete

The machine shop is
waiting for an order

Figure 3.4: Petri Net Model

Figure 3.6: Marked Petri Net II

Figure 3.5 shows a marked Petri net when an order is waiting to be processed. Two
tokens in P, denote that up to two orders may be processed in parallel. When a transition
t, that correspond to the start of processing fires, a token is put in place P, representing
that the order is being processed. Figure 3.6 shows an order being processed.

In Colored Petri nets, shown in Figure 3.7 (an enhanced class of PNs derived from
ordinary PNs [31, 32]), tokens are individual, distinguishable objects, with some properties
(colors) Transitions are not activated only by the presence of tokens but by the presence of

22

tokens of required colors.

An order Processing Processing The order is

arrives Py starts P s complete P; sent for delivery

t t

Y An order 2 Theorderis '3 Theorder %
is waiting being processed is complete
The machine shop is idle,
waiting for work
0]
Different orders (colors)
o

Figure 3.7: Colored Petri Net Model

Current hierarchical approaches related to PN modeling utilize the concept of “subnets”
[33, 29]. This results in higher level nets with a smaller number of places. Analysis at the
subnet level is propagated to the higher level net. However, the firing/operation of the total
net is not simplified by the identification of the node clusters which constitute the subnets.
A PN may be modified by substituting a transition or place by the corresponding subnet or
other way around. In addition, fusion of places and transitions can reduce the net.

Figure 3.8 shows a situation when a part of the Petri net is replaced by a single transition.
Places P, and P, and transitions t, and ¢3 are replaced by a single transition 7.

3.3 Implementation

Major aspects of automation in a manufacturing plant include computer controlled machines
and computer integrated manufacturing with the ability to efficiently schedule operations
based on events, both expected and unexpected [6, 12, 30, 38]. In developing such an
automated environment, one may often wish to try out scheduling solutions in a simulated
environment [50] before moving to the actual production environment to remove as many
unforeseen problems as possible before actual installation. Once the schedule is tested, it
can be applied to the actual CIM system. A software environment for such a task [24, 59] is
based on the model already shown in Figure 3.2 and consists of the following components:

System Interface (Monitor) : A graphical user interface providing all necessary func-
tionality needed to display and manipulate various data.

Workflow Analyzer : The main part the software which analyzes the system and produces
a corresponding schedule and/or simulation.

System Knowledge : A database containing both general information about machines/resources

and specific information for the current task.

23

An order ‘ Processing Processing , The order is
arrives P1\\ starts Pis complete .”3 sent for delivery

O

The orderis t The order t,
being processed is complete

- The machine shop is idle, AN
. waiting for work X

An grder Processing P The ordq is
arrives 1 2 sent for delivery
Fo——+—O
ty An order t, Theorder ¢,
is waiting is complete

Figure 3.8: Substitution of transition

Figure 3.9 describes in more details the structure of each of the three main system parts.

3.3.1 System Interface

The system interface has been built using ViewKit™ [35] (C++/Motif) in order to provide
a well-defined and portable user interface. The plant description is given in a form of a graph
where nodes represent machines and/or resources and edges represent connections between
machines and/or resource utilization. A manufacturing plant is then defined by constructing
a corresponding graph, from the library of known machines/resources stored in the object-
oriented database (ObjectStore [11, 1]) as shown in Figures 3.10 and 3.11. A machine/tool
is represented as a node in the graph, and flow of parts is described by arcs between nodes.
Nodes are classified based on ASME standard 101 (operation, transportation, storage, delay,
inspection), similar to JIS Z 8206.
The user interface is utilized as a system monitor. This is done as follows:

e Node appearance is related to the state of associated machine/tool

Current schedule and flow of parts are represented by arcs in the graph

Dialogs are used to represent various data and information about system

Additional features (zooming, overview window, etc.)

System operator interface

The System Interface includes the following:

24

SYSTEM INTERFACE

Graphical
Operator

Performance

Analyzer
Console

reactive plan
status info

schedule "what if* results

performance info

unanticipated event

WORKFLOW ANALYZER

‘ System Reactive System
® Action Planner Action
Scheduler Simulator

unanticipated events

sctions ihypolhetical model

)
:

Petri Net S i_ ________ .

Model of What If*

System ! H

! System Model

i H

° /

System
Database

Figure 3.9: Overview of the system model

Graphical Operator Console : Actual display of the data and user interface.

Status Monitor : Based on the current state of the system Graphical Operator Console
data display is updated.

Performance Analyzer : Reports (textual or graphical) are generated based on the cur-
rent and previous states of the system. In addition, various “What if” scenarios can

25

be used to generate reports about alternative schedules /solutions.

Action Manager : New schedules and/or actions from the Workflow Analyzer are used
to update the Graphical Operator Console. This module also serves as an interface to
the CIM system thus providing on-line capabilities.

3.3.2 Workflow Analyzer

The Workflow Analyzer is the most important part of the DRAS scheduler. Its function is to
evaluate the current state of the system and suggest possible actions in order to accommodate
for changes, e.g., machine/operator errors or modifications in the production plan. It is
implemented in C++ thus reflecting the object-oriented view of the components and data
in the system.

A class library is used to represent characteristics of various objects and functions in the
system. Well-defined taxonomy makes it easier to reuse existing data and to incorporate
new data.

The Workflow Analyzer consists of:

Petri Net Model of the System : A high-level Petri net is used to model the system.
Each object (machine, resource) is represented by its own Petri net and these nets are
connected among themselves. The marking of the Petri net represent the state of the
system.

System Action Scheduler : Based on the marking of the Petri net, a schedule is derived
in order to get a sequence of actions which can be repeated over and over so that
production can go on.

Reactive Planner : The Reactive Planner responds to errors coming form the Action
Manager and updates the Petri net Model of System.

“What if” System Model : In order to provide “What if” functionality, the changes in
the system design are modeled here.

System Action Simulator : The System Action Simulator performs various simulations
based on the changes in the system design.

The core of this software system is the Petri net Scheduler. Theoretical methodolo-
gies and applications of PNs have been developed for modeling analysis and performance
evaluations of production control systems, factory automation, and discrete event dynamic
systems. Recently, PNs and their modifications have also been used as a tool for performance
analysis and evaluation of decision-making organizations. Important properties that have
contributed to the value of PNs as a modeling tool include model clarity and ease of repre-
sentation, ability to model nondeterminism, conflicts, timing information, resource sharing,
concurrency, parallelism, and control of asynchronous operations.

26

3.3.3 System Knowledge
The System Knowledge consists of three parts:

System Database : It contains the information about the current state of the system as
well as the history, i.e. what activities took place in the system.

System Design : A “generic” knowledge of machine and resource types, scheduling and
planing is stored here.

“What if” System Design : This part of the System Knowledge is used to create various
“What if” situations, i.e. different states of the system which are then used for the
simulation purpose.

The database implementation has undergone several revisions. The initial implemen-
tation used Oracle relational database [9, 14, 37] and an interface layer to the rest of the
system. Later, the Oracle database was replaced by a local data structure which was finally
replaced by the ObjectStore object-oriented database [1].

The objects in the database include:

Machine : Describes a type of machine with associated attributes. It also includes a list
of supported operations, a list of errors, and a list of instances of this type o machine.
Each instance has some attributes that makes it unique (serial number, position, etc.).

Operation : Describes a production step that is defined by its input parts, output parts,
and production time. The production time is always adjusted by the Work Rate of the
particular machine.

Error : Describes a possible malfunction that is defined by a set of parameters which include
mean repair time, probability of error, etc. The probability is always adjusted by the
Failure Rate of the particular machine.

Part : Describes a product (or a semi-product) used or produced by an operation.
Property : Describes an attribute (size, color, etc.) associated to a part.
Production : Describes a set of input parts, a set of operations and a final part.

Figure 3.10 shows the high-level machine subschema for the DRAS system. The ellipses in
Figure 3.10 represent non-primitive classes from the DRAS class library. The links between
the classes represent attributes and are labeled by the attribute name. A link from class X to
class Y labeled P means that P is an attribute of X with range class (domain) Y. Only non-
primitive classes and attributes are shown in the figure. Attributes such as “machine name”
with primitive values (string, integer, etc.) are not shown. From the machine point of view,
the database is concerned with information such as machine dimensions, power requirements,
computer connections, connectivity constraints, and power requirements. These attributes
are consulted when placing a machine in the virtual environment to make sure no constraints
have been violated and to ensure feasible machine configurations. The figure also shows a
partial inheritance hierarchy for machines. Sewing Machines, Cutters, and Spreaders are all

27

Operator
Profile

Computer Computer
Connections Connectors
Power
Connectors

onnectivity _ Connectivity
Constraints Constraints

Machine
Geoometry

Dimensions

Structures

Figure 3.10: Machine Subschema

subclasses of Machines inheriting both structure and behavior. Sewing Machines, Cutters,
and Spreaders define additional attributes and methods needed to more closely capture the
state and behavior of these machines. This structure allows for easy extension of the schema
by adding new types of machines as subclasses of the Machine class.

A high-level apparel plant schema is shown in Figure 3.11. As in Figure 3.10, only
non-primitive classes are shown. With respect to an apparel plant, the database stores and
retrieves data for the plant’s electrical, lighting, and heating and cooling systems, computer
networks, and plant dimensions and shape. There are also relationships between machines

Blectrical Electrical
System Outlets
Lightin,

grre g Lights
System

Plant
Geometry
Computer
Networks
Heating/Coolin;

System

Figure 3.11: Plant Subschema

Plant

Plants
Shape

Computer
Networks

and plants. For example, Machine M is found in Plant P; Plant P contains Machine M. There

28

are many other relationships between plants and machines. This particular example shows
the need for the relationship utility offered by the underlying object-oriented database. This
relationship management helps to ensure that the database remains in a consistent state.

The Petri nets are used to model the system and object-oriented databases are used to
store the knowledge about the system The combination of the Petri net model and the object-
oriented database is used to implement the DRAS system. The basic structure shown in
Figure 3.2 is implemented in three layers. The first layer is an interface layer that coordinates
the communication with the user and the CIM system with the rest of the DRAS system. The
second layer is a “Petri net” layer that models the CIM system and produces the schedule.
The third layer is a database layer that stores all the necessary knowledge about the CIM
system and the production process.

3.4 Example

A sample system is shown in Figure 3.12 where two different parts are used to assemble
a final product. Before the assembly, both parts are stored (Storage A and B). They are
then transported (Transportation A and B) to preprocessing (Operation A and B) and
then transported (transportation C an D) to the assembly (Operation C). Once parts are
assembled, the final product is transported (Transportation E) to the warehouse (Storage
C).

Storage A . Operation A

Operation C Storage C

Transportation A Transportation C

Transportation B Transportation D

W Transportation E

Storage B Operation B

Figure 3.12: A sample system

All storage, transportation and operation nodes represent a machine /tool. Each machine
is represented by the corresponding Petri net (Figure 3.14). These Petri nets are then joined
together by transitions that correspond to the connecting lines. For each type of node in
Figure 3.12 there is a corresponding colored Petri net (Figure 3.13). The creation of such
a Petri nets is automated based on the information about the machine. The information
required to construct the colored Petri nets is stored in the DRAS database.

The differences between Petri nets for different nodes (machines) is both in marking and
structure. Petri nets for Operation A and Operation B have the same structure, however
since the corresponding machines process different parts, markings are different because of
the different colors for tokens. Petri nets for Operation A and Operation C have different
structures because for Operation C there are two input transitions ¢; and places P, (Fig-
ure 3.4). Combining all Petri nets together by joining matching input and output transitions

29

a Petri net for the whole system is constructed.

Operation

|
|
Storage !
;
]

Figure 3.13: Petri nets for nodes

The complete Petri net is shown in Figure 3.12. This Petri net models the whole system
and serves as a base for the schedule. The change in system is introduced as a change
in marking. This change is reflected through change in the properties of the Petri net (e.
g. liveness). If, for example, a machine for Operation B breaks down, that is modeled by
removing a token either from place P, or Py (Figure 3.4), based on the current marking. The
newly created marking is then analyzed and as a result, transitions ¢, and ¢3 in colored Petri
net for Operation C are no longer live. This means that current production has stopped.
Then, a decision is made, based on the available information.

e If the machine has a short repair time, a possible action is to do nothing and wait for
the repair to be completed which will be modeled by puting back the token that has
been removed because of the machine breakdown.

e If there is an additional resource available (machine), the system may be reconfigured
and production continues as before.

e If there is an alternative production available which includes only Operation B and C,
the system may be reconfigured and the alternative production is started.

30

Figure 3.14: Petri net for the sample system

31

Chapter 4

User Guide

4.1 Introduction

The DRAS software is intended to be the user friendly and easy to use. Program is started
by double clicking on icon representing either the DRAS application (dras) or a file conating
DRAS data (example.dras), as shown in Figure 4.1.

Figure 4.1: Icons

Once the application is running, it display the factory layout, as defined in the file. A
menu bar (Figure 4.2) provides a set of menus that provide necessary functionality to use
the DRAS system. Nodes™ positions in the application window can be set independently of

Figure 4.2: Menu bar

the actual position in the factory (Figure 4.3). Following sections describe in more details
each menu and its items (file, database, edit, analyze, monitor, view, help).

Figure 4.3: User interface

4.2 File Menu

The file menu (Figure 4.4) provides functionality related to the file manipulation.

Figure 4.4: File menu

New : Deletes existing layout data and creates new, untitled layout. Before deleting, the
user is asked to confirm the operation.

Open : Opens and existing file containing DRAS related data. Double clicking on the
DRAS file icon is a shortcut for this operation. If there is already an open file which

has been modified since the last save operation, the user is asked whether to save the
old file. :

33

Save : Save the current layout (if needed). If the current layout has no name (new file),
the user is asked to enter the file name.

Save As : Save the current layout under a different name.

Revert : Undo all changes since the last save operation. Before undo, the user is asked to
confirm the operation.

Print Prints the current layout.

Exit Exits the application. If there is a data that has noe been saved, user is asked whether
to save it.

An example of the dialogs is given in Figure 4.5.

Lo

S

b

-3@1\

Figure 4.5: File open dialog

34

4.3 Database Menu

The database menu (Figure 4.6) provides access to the database. The database contains

Figure 4.6: Database menu

all the necessary system knowledge, as well as current layout. Therefore, the user can
view/modify information related to:

Machine/Tool : Node in the layout.

Part : Elements that are contained in a node.
Operation : Current state of the node.

Production : Overall production plan for that layout.
Error : Posiible types of errors.

When an item for the database menu is selected a dialog shown in Figure 4.7 appears. By
selecting the appropriate category, the user can access other database components without
going through the database menu again.

In addition, the user can access some layout node related data by double clicking on
that node. This displays the node dialog shown in Figure 4.8. The dialog that appears also
enables modifying properties of the node.

35

SR
S
L

//w%#%///.%/%ﬁzf/ﬂ/f///é/
S
X S

R

,.
R
S

terface

1

Database i

7

4

igure

F

it Menu

4.4 Ed

ions.

ing funct

it

andard ed

st

ides

prov

)

t or cop

9

4

Figure

t menu (
the las

i

The ed

ion

operat

-

t cu

Undo

Undo

item.

ted

the selec

: Remove

Cut

tem

Copy the selected i

Copy

ion

operat

.

t of the last copy

ten

the con

Paste

Paste

36

Figure 4.8: Node Dialog

Figure 4.9: Edit menu

4.5 Analyze Menu

The analyze menu (Figure 4.10) provides for the checking of the system operation and
rescheduling of the production plan.

Schedule : In the case of an error, an alternative schedule is generated and displayed. As
an example, a machine error is indicated by red color of the node C 3 (Figure 4.11).
By activating this menu item, a new schedule is generated (Figure 4.12).

37

Figure 4.10: Analyze menu

Utilization : For selected resources (machine/tool) utilization is analyzed.

Error : Review and analysis of errors that occur in the system.

Figure 4.11: Node failed

38

Figure 4.12: New Schedule

4.6 Monitor Menu

The monitor menu (Figure 4.13) enables monitoring functions that are not directly related
to the scheduling.

Figure 4.13: Monitor menu

Network : Controls the connection to the cell controller and the real-time payroll system.
Due to the unavailability of this components, a small application has been written to
emulate their behavior and to communicate messages as if they are running.

Simulation : “What-if” scenarios are tested by switching to the simulation mode where
the “dry” run of the system is performed.

39

4.7 View Menu

The view menu (Figure 4.14) enables viewing various aspects of the system in different
formats.

Figure 4.14: View menu

Options : Displays and edits various application options.
Schedule : Displays current schedule.
Resources : Displays resources usage.

Overview : For large layouts, a small window displaying a layout overview is shown (Fig-
ure 4.15).

Zoom : Scales up or down the layout displayved in the application window.
Petri Net : A Petri net of the system is displaved.

Virtual Environment : Display a virtual environment for the given layout (Figure 4.16).
This has very limited functionality.

Figure 4.15: Overview window

40

Figure 4.16: Virtual Environment

4.8 Help Menu

The help menu (Figure 4.17) provides some limited help to the user while using the program.

Figure 4.17: Help menu

Click for Help : Information about the part of the application window selected by next
click is displayed.

Overview : General information about the application (text window).
Index : List of selected topics with additional information.
Keys & Shortcuts : Not functional, present only to comply with the standard interface.

Product Information : A product information dialog is shown (Figure 4.18).

41

Figure 4.18: DRAS product information dialog

Chapter 5

Conclusion

The DRAS scheduler has addressed the need for flexibility in apparel manufacturing pro-
cesses:

e by providing the means for flexible support of automated machines through a CIM
network

e by providing the necessary communication to inform the machines that a particular
bundle has arrived for processing as well as giving the details of the required processing,

e by facilitating a more flexible approach to manufacturing since the machine settings
can be adjusted as frequently as necessary, and,

e by allowing the use of small bundles and supporting changes in style.

The combination of the CIM system network and the DRAS results in a CIM implemen-
tation that assists in quick response to demands and aids in rapid changeover by accom-
modating variation in product mix, improving operator performance, reducing management
involvement in day-to-day production details and providing an enhanced information sys-
tem to project Mean Time Between Failure (MTBF) and Mean Time to Recover (MTTR)
statistics [25].

One important area of further development is the application of the Virtual Reality
based interface/environment. Some initial work has been done [5, 26, 65] which validates
the concept. Current work is focused on the full integration of Virtual Reality that will
include the integration of a multimedia object-oriented database which will be used for the
interactive design and modeling in the virtual environment.

43

Bibliography

[1]

2]

[3]

[4]

[6]

[7]

[9]

[10]

[11]

—. ObjectStore Tutorial: Release 3.0 For UNIX Systems. Object Design, Inc., Burling-
ton, MA 01803-4194, Dec. 1994. Part Number 300-100-002 3C.

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modeling
with Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing. John Wiley
& Sons, Inc., Chichester, 1995.

R. Y. Al-Jarr and A. A. Desrochers. Petri nets in automation and manufacturing.
Technical Report RAL99, Rensselaer Polytechnic Institute, Troy, NY, Nov. 1987.

R.Y. Al-Jarr and A. A. Desrochers. Modeling and analysis of transfer lines and produc-
tion networks using generalized stochastic Petri nets. In Proceedings of the Conference
on University Programs in Computer Aided Engineering, Design and Manufacturing,
Atlanta, Georgia, June 1988.

L. Albright, D. Moreau, and T. Williams. A virtual reality framework for shopfloor con-
figuration. In Proceedings of the Fifth Annual Academic Apparel Research Conference,
pages 7-1:7-9, Lafayette, Louisiana, Feb. 1994.

R. G. Askin and C. R. Standridge. Modeling and Analysis of Manufacturing Systems.
John Wiley & Sons, Inc., New York, 1993.

C. Beck and B. Krogh. Models for simulation and discrete control of manufacturing
systems. In Proceedings of the 1986 IEEE International Conference on Robotics and
Automation, pages 305-310, Mar. 1986.

J. Billington. Many-sorted high level nets. In Proceedings of the Third International
Workshop on Petri Nets and Performance Models, Kyoto, Japan, Dec. 1989.

S. M. Bobrowski. Mastering Oracle7 & Client/Server Computing. Sybex, San Francisco,
1994.

G. Bruno and G. Marchetto. Process-translatable Petri nets for the rapid prototyping
of process control systems. IEEE Transactions on Software Engineering, SE-12, Feb.
1986.

R. G. G. Cattell, editor. The Object Database Standard: ODMG-93 Release 1.1. Morgan
Kaufmann Publishers, Inc., San Francisco, 1994.

44

[12] R. B. Chase and N. J. Aquilano. Production & Operations Management: A Life Cycle
Approach. IRWIN, Homewood, IL 60430, sixth edition, 1992.

[13] G. Ciardo, J. Muppala, and K. S. Trivedi. SPNP: Stochastic Petri net package. In Pro-
ceedings of the Third International Workshop on Petri Nets and Performance Models,
Kyoto, Japan, Dec. 1989.

[14] P. Corrigan and M. Gurry. ORACLE Performance Tuing. O'Reilly & Associates, Inc.,
Sebastopol, CA 95472, 1993.

[15] D. H. Crocket and A. A. Desrochers. Manufacturing workstation control using colored
Petri nets. Technical Report RAL83, Rensselaer Polytechnic Institute, Troy, NY, Aug.
1986.

[16] R. David and H. Alla. Petri Nets and Grafcet: Tools for modelling discrete event
systems. Prentice-Hall, New York, 1992.

[17] A. A. Desrochers, editor. Modeling and Control of Automated Manufacturing Systems.
IEEE Computer Society Press, Washington, D.C., 1990.

[18] A. A. Desrochers and R. Y. Al-Jaar. Applications of Petri Nets in Manufacturing
Systems: Modeling, Control, and Performance Analysis. IEEE Press, New York, 1995.

[19] D. Dubois and K. Stecke. Using Petri nets to represent production processes. In
Proceedings of the 22nd CDC, pages 1062-1067, Dec. 1983.

[20] P. A. Fishwick. Simulation Model Design and Ezecution: Building Digital Worlds.
Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1995.

[21] H. J. Genrich. Predicate transition nets. In W. Brauer, W. Reisig, and G. Rozenberg,
® editors, Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986,
volume 254 of Lecture Notes in Computer Science, pages 207-247. Springer-Verlag,

Berlin, 1987.

[22] H. J. Genrich and K. Lautenbach. System modeling with high-level Petri nets. Theo-
retical Computer Science, 13:109-136, 1981.

(23] J. Gentina and D. Corbeel. Colored adaptive structured Petri nets: A tool for the
automatic synthesis of hierarchical control of FMSs. In Proceedings of the 1987 IEEE
International Conference on Robotics and Automation, pages 1166-1173, Apr. 1987.

¢ [24] D. Gracanin and P. Srinivasan. Software environment for simulation and real-time
coordination of manufacturing systems. In Proceedings of the 87th Midwest Symposium
on Circuits and Systems, volume 2, pages 1544-1547, Lafayette, Louisiana, Aug. 1994.

[25] D. Gracanin, K. P. Valavanis, S. A. Smith, Jr., T. Williams, II, and A. Steward. A

dynamic resource allocation system for computer integrated manufacturing systems. In

- Proceedings of the Sizth International Symposium on Robotics and Manufacturing, 1996.
in print.

45

[26] D. Gracanin and T. Williams. A virtual reality based interface to a dynamic resource
allocation scheduler. In Proceedings of the 1995 IEEE International Symposium on
Intelligent Control, pages 254-258, Monterey, California, Aug. 1995.

[27] I Hatono, N. Katoh, K. Yamagata, and H. Tamura. Modeling of FMS under uncertainty
using stochastic Petri nets. In Proceedings of the International Workshop on Petri Nets
and Performance Models, Kyoto, Japan, Dec. 1989.

[28] H. P. Hillion. Performance evaluation of decisionmaking organizations using timed
Petri nets. Technical Report LIDS-TH-1590, Laboratory for Information and Decision
Systems, MIT, Cambridge, MA, Aug. 1986.

[29] P. Huber, K. Jensen, and R. M. Shapiro. Hierarchies in coloured Petri nets. In
W. Brauer, W. Reisig, and G. Rozenberg, editors, Advances in Petri Nets 1990, Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1990.

[30] J. Ishiwata. IE for the Shop Floor, volume 1: Productivity Through Process Analysis.
Productivity Press, Inc., Portland, Oregon, 1991.

[31] K. Jensen. Coloured Petri nets. In W. Brauer, W. Reisig, and G. Rozenberg, edi-
tors, Petri Nets: Central Models and Their Properties, volume 254 of Lecture Notes in
Computer Science, pages 207-247. Springer-Verlag, Berlin, 1987.

[32] K. Jensen. Coloured Petri nets: A high level language for system design and analysis. In
K. Jensen and G. Rozenberg, editors, High-level Petri Nets: Theory and Applications,
pages 44-119. Springer-Verlag, Berlin, 1991.

[33] K. Jensen and G. Rozenberg, editors. High-level Petri Nets: Theory and Applications.
Springer-Verlag, Berlin, 1991.

[34] A. Johnson and M. Malek. Rainbow nets for system analysis. Technical Report
TR51.0565, University of Texas at Austin, 1989.

[35] K. Jones. IRIS ViewKit'™ Programmer’s Guide. Silicon Graphics, Inc., Mountain
View, CA 94039-7311, 1994. Document Number 007-2124-001.

[36] M. Kamath and N. Vishwanatham. Applications of Petri net based models in the mod-
eling and analysis of FMSs. In Proceedings of the 1987 IEEE International Conference
on Robotics and Automation, Apr. 1987.

[37] G. Koch. ORACLE7: The Complete Reference. Osborne McGraw-Hill, Inc., Berkeley,
1993.

[38] L. J. Krajewski and L. P. Ritzman. Operations Management. Addison-Wesley Publish-
ing Company, Reading, Massachusetts, third edition, 1993.

[39] B. Krogh and R. Sreenivas. Essentially decision free Petri nets for real time resource
allocation. In Proceedings of the 1987 IEEE International Conference on Robotics and
Automation, pages 1005-1011, Apr. 1987.

46

[40] J. Martinez, P. Muro, and M. Silva. Modeling, validation and software implementation
of production systems using higher level Petri nets. In Proceedings of the 1987 IEEE
International Conference on Robotics and Automation, pages 1180-1185, Apr. 1987.

[41] K. McDermott and K. Kamisetty. Development of an industrial engineering based
flexible manufacturing system. Industrial Engineering Magazine, Dec. 1991.

[42] R. McHaney. Computer Simulation: A Practical Perspective. Academic Press, San
Diego, 1991.

[43] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541-580, Apr. 1989.

[44] T. Murata and D. Zhang. A predicate-transition net model for parallel interpretation of
logic programs. IEEE Transactions on Software Engineering, 14(4):481-497, Apr. 1988.

[45] Y. Narahari and N. Vishwanatham. On the invariants of colored Petri nets. volume 222
of Lecture Notes in Computer Science, pages 330-345. Springer-Verlag, Berlin, 1986.

[46] K. M. Passino and P. J. Antsaklis. Planning via heuristic search in a Petri net framework.
In Proceedings of the 1988 American Control Conference, Atlanta, GA, June 1988.

[47] K. M. Passino and P. J. Antsaklis. Planning via heuristic search in a Petri net frame-
work. In Proceedings of the Third IEEE International Symposium on Intelligent Control,
Arlington, VA, Aug. 1988.

[48] J. L. Peterson. Petri nets. ACM Comput. Surv., 9:223-252, Sept. 1977.

[49] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs, New Jersey 07632, 1981.

[50] U. W. Pooch. Discrete Event Simulation: A Practical Approach. CRC Press, Boca
Raton, Florida, 1993.

[51] C. Ramchandani. Analysis of asynchronous concurent systems by timed Petri nets.
Technical Report 120, Laboratory of Computer Science, MIT, Cambridge, MA, 1974.

[52] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, Berlin, 1985.

[53] W. Reisig. A Primer in Petri Net Design. Springer Compass International. Springer-
Verlag, Berlin, 1992.

[54] P. Remy, A. Levis, and V. Jin. On the design of distributed organizational structures.
Technical Report LIDS-P-1581, LIDS, MIT, Cambridge, MA.

[55] A. Sahraoui, H. Atabakche, M. Courvoisier, and R. Valette. Joining Petri nets and
knowledge based systems for monitoring purposes. In Proceedings of the 1987 IEEE
International Conference on Robotics and Automation, Apr. 1987.

47

[56] M. Schiffers and H. Wedde. Analyzing Program Solutions of Coordinated Problems by
CP Nets, volume 64 of Lecture Notes in Computer Science, pages 463-473. Springer-
Verlag, Berlin, 1987.

[67] M. Silva and R. Valette. Petri Nets in Flexible Manufacturing, pages 375—417. Advances
in Petri Nets. Springer-Verlag, Berlin, 1990. '

[58] S. A. Smith, Jr., T. Williams, II, and P. M. Landry. Transfer of CIM technology to
an apparel manufacturing plant. In Proceedings of the Fifth Annual Academic Apparel
Research Conference, pages 11.1-11.14, Lafayette, Louisiana, Feb. 1994.

[69] P. Srinivasan, D. Gracanin, and D. Brockhaus. Modeling complex information systems
using parameterized Petri nets (PPNs). In Proceedings of the 37th Midwest Symposium
on Circuits and Systems, volume 1, pages 735-738, Lafayette, Louisiana, Aug. 1994.

[60] D. Tabak and A. Levis. Petri net representation of decision models. IEEE Transactions
on Systems, Man and Cybernetics, SMC—-15(6):812-818, 1985.

[61] K. P. Valavanis. On the hierarchical modeling analysis and simulation of flexible man-
ufacturing systems with extended Petri nets. IEEE Transactions on Systems, Man and
Cybernetics, 20(1):94-110, January/February 1990.

[62] F. Y. Wang and G. N. Saridis. A formal model for coordination of intelligent ma-
chines using Petri nets. In Proceedings of the Third IEEE International Symposium on
Intelligent Control, Arlington, VA, Aug. 1988.

[63] F.Y. Wang and G. N. Saridis. The coordination of intelligent machines: A case study. In
Proceedings of the Third IEEE International Symposium on Intelligent Control, Albany,
NY, Sept. 1989.

[64] S. Weingaertner. A model of submarine emergency decision making and decision aiding.
Masters thesis, LIDS, MIT, Cambridge, MA.

[65] T. Williams, D. Gracanin, K. Valavanis, and A. Steward. Real-time scheduling in an
event driven virtual environment. In Proceedings of the Conference on Advances in
Modeling and Simulation, pages 3—-12, Huntsville, Alabama, Apr. 1994. U. S. Army
Missile Command, Department of Defense.

[66] Y. Yaw, F. Law, and W. Ju. The algorithm of a synthesis technique for concurrent
systems. In Proceedings of the Third International Workshop on Petri Nets and Per-
formance Models, Kyoto, Japan, Dec. 1989.

[67) A. Zenie. Colored stochastic Petri nets. In Performance’84, 1985.

[68] M. Zhou. A Theory for the Synthesis and Augmentation of Petri Nets in Automation.
PhD thesis, ECSE, Rensselaer Polytechnic Institute, Troy, NY, 1990.

[69] M. Zhou and F. DiCesare. Petri Net Synthesis for Discrete Event Control of Manufac-
turing Systems. Kluwer Academic Publishers, Boston, 1993.

48

